United States Patent

US009355171B2

(12) 10) Patent No.: US 9,355,171 B2
Thomas et al. 45) Date of Patent: May 31, 2016
(54) CLUSTERING OF NEAR-DUPLICATE 6,785,669 Bl 8/2004 Aggarwal
DOCUMENTS 6,990,628 Bl 1/2006 Palmer
7,158,961 Bl 1/2007 Charikar
(75) Inventors: Joy Thomas, Sunnyvale, CA (US); ;jgg:éég g% 13%882 g};ﬁr;pudi
Sauraj Goswami, Palo Alto, CA (US); 7,574,449 B2 8/2009 Majumder
Vamsi Salaka, Fremont, CA (US) 2003/0061025 A1 3/2003 Abir
2005/0060643 Al 3/2005 Glass
(73) Assignee: Hewlett Packard Enterprise (Continued)
Development LP, Houston, TX (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 WO WO 00/33215 Al 6/2000
U.S.C. 154(b) by 270 days. WO WO 2008/009991 Al 1/2008
(21) Appl. No.: 12/870,733 OTHER PUBLICATIONS
o Andoni, Alexandr et al; *“Near-Optimal hashing algorithms for
(22) Filed: Aug. 27,2010 approximate nearest neighbors”; 2008, Communications of the
(65) Prior Publication Data ACM, vol. 51, No. 1, pp. lté'lzz.' 4
ontinue
US 2011/0087668 Al Apr. 14,2011
Related U.S. Application Data Primary Examiner — Thu-Nguyet Le
(60) Provisional application No. 61/250,1335, filed on Oct. (74) Attorney, Agent, or Firm — Hewlett Packard Enterprise
9, 2009. Patent Department
(51) Int.CL (57) ABSTRACT
GOG6F 17/30 (2006.01)))
(52) US.CL Documents likely to be near-duplicates are clustered based on
CPC ... GOGF 17/30705 (2013.01); GO6F 17/3071 document vectors that represent word-occurrence patterns in
’ (2013.01) a relatively low-dimensional space. Edit distance between
. . . ' documents is defined based on comparing their document
(58) Field of Classification Search s panng .
CPC GO6F 17/30705 vectors. Inone process, initial clusters are formed by applying
USPC """"""""""""""""""""""""" 707/737 a first edit-distance constraint relative to a root document of
See application file for complete search histo each cluster. The initial clusters can be merged subject to a
PP P - second edit-distance constraint that limits the maximum edit
; distance between any two documents in the cluster. The sec-
(56) References Cited Y

U.S. PATENT DOCUMENTS

6,240,409 Bl 5/2001 Aiken
6,745,205 B2 6/2004 Choi
6,757,675 B2 6/2004 Aiken

0 502
\ Start -
\ ?-
R}

ond edit-distance constraint can be defined such that whether
it is satisfied can be determined by comparing cluster struc-
tures rather than individual documents.

20 Claims, 9 Drawing Sheets

—>{ Select document ¢ to process

508-..__

Define new cluster

510

Save all X{d)[7] as X{1[] for
new cluster

Select one of the clusters

Add document d to
malched/selected cluster

518

US 9,355,171 B2
Page 2

(56)

2006/0095521
2007/0038659
2007/0083492
2007/0136243
2007/0174267
2008/0082531
2008/0133496
2008/0183693
2008/0205774
2008/0205775
2009/0198677
2009/0216755

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al*
Al*
Al
Al
Al
Al
Al
Al

5/2006
2/2007
4/2007
6/2007
7/2007
4/2008
6/2008
7/2008
8/2008
8/2008
8/2009
8/2009

Patinkin
Datar
Hohimer
Schorn

Patterson et al.
Suarez ..ot

Kanungo
Arasu
Brinker
Brinker
Sheehy
Itamar

........... 707/5
........... 707/7

OTHER PUBLICATIONS
Gionis, Aristides et al.; “Similarity Search in High Dimension via
Hashing”; 1999, Proceedings of the 257 VLDB Conference,
Edinburgh Scotland, 12 pages.
Ravichandran, Deepak et al.; “Randomized Algorithms and NLP:
Using Locality Sensitive Hash Function for High Speed Noun Clus-
tering”; 2005, Proceedings of the 43" Meeting of the ACL, pp. 622-
629.
Salakhutdinov, Ruslan et al.; “Semantic Hashing”; 2009, Interna-
tional Journal of Approximate Reasoning, vol. 50, pp. 969-978.
Stein, Benno et al.; “Applying Hash-based Indexing in Text-based
Information Retrieval”; 2007, Faculty of Media, Media Systems, 7

pages.

* cited by examiner

U.S. Patent May 31, 2016 Sheet 1 of 9 US 9,355,171 B2

100 STORAGE SUBSYSTEM 104
\ (. /—’—\
ANALYSIS DATA w
DICTIONARY | "% 126
~ DOCUMENT INFO
134
HASH DEFS i
w DoclD | Vector ND Cliet,
e < a0 d1 H(d1) ND Cluster
d1
o MEMORY
\ ND DETECTION || \
120 o .
124 129
CPU DOC TRANSFORM ||
121
< \ =
\\ o
NETWORK o
NTEREACE USER INTERFACE 108
USER
NPT DISPLAY
DEVICE |- e 116

FIG. 1

U.S. Patent May 31,2016 Sheet 2 of 9
d
200
w13 w2 w7 wi3 w2 w8 ... DICTIONARY
/ e \:/ N //
202" e 204
WORD COUNT |~
wi 10000
w2 11000
w3 00000
Wi 11100
w8 10000
W3 1111
/206
208 N/
"HASH | WORDS TO USE YT
A1 Wi, WZ, w19 .. T
HI2] w2 wi w0, | [
HI3] w5, wi7, w6, ..
HI4] W8, w9, W3, ...
Hs] w6, W22, w93, ...

FIG. 2

212-—" X
X

214 -

US 9,355,171 B2

132

H(d) = (H(d)[1], H(d)[2], H(d)3], H{d)[4], H(d)[5])

X)) = < Hd)2] H(d)[3] H(d)4] H(d)[5] >
X(d)[2] = < H(e)[1] H(d)[3] H(d)4] H(e)[5] >

d)I3] = < H(

((1] A(
@W=<M[ﬂ%

2] Hi
d)

(d)[4] A(d)5] >
E]fﬁd)

[3] A(d)[5] >

Xd)Is] = < Ha)1] H(d)(2] A(I)3] H(d)i4] >

»

X(d)I0] =< H(d)[1] H(d)[2] H(d)(3] A(d)4] H(d)I5] >

U.S. Patent May 31, 2016 Sheet 3 of 9 US 9,355,171 B2

(12,5,3,8,16)
VR 304 | (41,3,8,7)
302 R
. . \
(4,1,3,8,16) 0 306
4(?0 (Start) 402
Y
Seti=1 404

Sort unclustered documents according 406

to X[i]

Cluster all unclustered documents with 408
same value of X]i]

U.S. Patent

500

May 31, 2016

Sheet 4 of 9

Select document d to process

_——504

506

510~

Does
any X(d)[i] match X()[]] of
existing cluster?

508

Define new cluster

v

| Save all X(d)[1] as X(r)[] for

new cluster

More documents?

YES

A

Do
different X(¢)[i] match X(r)[]] in
different clusters?

NO

US 9,355,171 B2

YES

Select one of the clusters

y

Add docu

ment d to

)

matched/selected cluster

518

FIG. 5

U.S. Patent May 31, 2016 Sheet 5 of 9 US 9,355,171 B2

CLUSTER 500
Map-0 (/
Key: X(n[0] =
Member: docID(r)
Size: mapCount[N]

Map-1 h
Key: X(n[1]
ExcludedHash: H(r)[1]
Members:
Doc d1: doclID, H(d1)[1]
Doc d2: doclID, H(d2)[1]

(o]
N

Map-2 - 604

Map-3

Map-N

FIG. 6

702

706 FIG. 7

U.S. Patent May 31, 2016 Sheet 6 of 9 US 9,355,171 B2

(CLUSTER 804
802

814 CLUSTER]
ROOT B 812

(CLUSTER

CLUSTER|
920

FIG. 9A | Lo}

U.S. Patent

May 31, 2016 Sheet 7 of 9

(Stat)—1002

A 4

US 9,355,171 B2

than 2 non-empty maps)

Generate list of mergeable clusters (no more

| — 1004

A 4

Select mergeab

le root cluster R

| _—— 1006

A

y

Select candidate cluster C to merge into R

| _— 1008

1010
Do
Clusters C and R have same
populated maps

U, K)?

1014

Does
root(C) differ from root(R) only in
HIJ, HIK?

NO

1016

Merge clusters C and R

YES ,
More candidate clusters C?

\ YES

More root clusters R? >

FIG. 10

U.S. Patent May 31, 2016 Sheet 8 of 9 US 9,355,171 B2

1157

1156

FIG. 11B

U.S. Patent May 31, 2016 Sheet 9 of 9 US 9,355,171 B2

1200
\ (Start >/1202

A 4

Create constrained and unconstrained clusters 1204
Y
— > Select root cluster R 1206
Y
—>! Select candidate cluster C for merging with R 1208
Y
Determine set of hashes that are different 1210
between root(C) and root(R)
Y
Compute upper bound on edit distance between 1212
maps of C and maps of R

Upper bound
within limit?

1216

Merge clusters Cand R

More candidate clusters C?

1222

YES NO

Y

More root clusters R? End

FIG. 12

US 9,355,171 B2

1
CLUSTERING OF NEAR-DUPLICATE
DOCUMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/250,135, filed Oct. 9, 2009, entitled
“Clustering of Near-Duplicate Documents,” the disclosure of
which is incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

The present disclosure relates generally to automated
document analysis and in particular to identification and clus-
tering of near-duplicate documents.

With the proliferation of computing devices and commu-
nication networks such as the Internet, an ever increasing
amount of information is stored in the form of electronic
documents. Such documents might be generated using appli-
cation software such as word processing programs, e-mail
programs, web page development tools, etc. Electronic docu-
ments can also be generated by scanning paper documents
and employing optical character recognition (“OCR”) or
other techniques to create an electronic representation of the
content.

It is often necessary to search through a large collection of
electronic documents to find information relevant to a par-
ticular question. For example, a number of search services
provide interfaces via which users can search electronic docu-
ments that are accessible via the World Wide Web. In another
context, discovery in civil litigation usually involves the pro-
duction of massive quantities of electronic documents that the
producing and receiving parties must sift through.

Often, a large collection of documents will include mul-
tiple documents that are near-duplicates of each other. For
example, in the context of electronic document discovery, a
party may produce multiple drafts of a contract whose terms
were being negotiated. The drafts will often be largely iden-
tical in content, but the wording in sections under discussion
will vary from one draft to the next. As another example,
multiple e-mail messages from the same discussion thread
(including e.g., replies and/or forwarded e-mails) may be
identical except for the addition of a few words and changes
in the message headers from one message to the next. As
another example, in the context of the World Wide Web,
several pages on different sites may copy the same content
from a single source (e.g., a public-domain source), and the
pages may differ only in ancillary features such as layout,
titles, lists of related links, etc.

Identifying near-duplicates of'a document can be useful for
a number of purposes. For example, in litigation, the elec-
tronic documents being produced often must be reviewed by
human reviewers. Having the same reviewer handle a group
of'near-duplicate documents together improves the likelihood
that the documents will be handled consistently. In addition,
at times, reviewing each of the near-duplicates can yield
interesting and potentially valuable information, such as the
history of a contract negotiation. As another example, when a
user is searching for a particular document, a single document
from a group of near-duplicates can be used as representative
of the group.

BRIEF SUMMARY OF THE INVENTION

Identification of near-duplicate documents remains a chal-
lenging problem for automated document analysis systems.

10

15

20

25

30

35

40

45

50

55

60

65

2

In general, existing systems that address the problem of
detecting near-duplicate documents rely on non-scalable
techniques and/or techniques that are limited to certain types
of documents. For example, one technique involves compar-
ing quantitative representations of two documents and iden-
tifying the documents as near-duplicates if their quantitative
representations meet a minimum threshold of similarity, e.g.,
95%. Such pairwise comparison, however is not readily scal-
able to a large corpus of documents.

Other techniques rely on information content of particular
types of documents. For instance, e-mail messages can be
grouped by thread based on header fields such as subject line,
sender and recipient information, and/or message 1D refer-
ences embedded in the headers. As another example, some
documents contain metadata embedded in the document or in
a document repository, such as version information, that can
be used to identify documents likely to be highly similar; for
instance, different versions of the same document can be
identified as near duplicates. However, these techniques are
limited to particular types of documents and are not generally
applicable. Nor are they necessarily reliable. For example,
one person can use the “reply” function in e-mail to send an
unrelated message, and header-based techniques for identi-
fying near-duplicates could miss the difference in content.

Further complicating the problem is that “near-duplicate”
is not a transitive relationship. That is, by making incremental
changes to a document d,, one can create successive docu-
mentsd,, d,, . ..,d,. Each pair of successive documents might
be near duplicates of each other, but it is not necessarily the
case that d; and d,, would be near-duplicates.

Embodiments of the present invention provide automated
techniques for identifying clusters of near-duplicate docu-
ment in which addition of documents (or groups of docu-
ments) to clusters can be constrained such that each document
within the cluster has at least a threshold level of similarity to
each other document within the cluster. In some embodi-
ments, each document is represented as a vector in a high-
dimensional “word” space with axes corresponding to difter-
ent words and component values corresponding to the
number of occurrences of the words. The high-dimensional
content vector for a document can be projected onto a much
smaller number (N) of different (preferably though not nec-
essarily orthogonal) axes, with each projection being based
on a different subset of the words making up the word space.
In one embodiment, the N projections are made using a hash
function that is applied separately to a bit string representing
the occurrence pattern of words in N different subsets. The N
projections form a N-dimensional document vector repre-
senting the document. An edit distance between documents is
defined in terms of the difference between their document
vectors, e.g., as the number of components of the document
vector that are different between the two documents. Clusters
containing documents that are near-duplicates of each other
can be created based on similarity constraints defined in terms
of the edit distance.

In certain embodiments, clusters can be formed in a single
pass through the set of documents to be clustered. Each clus-
ter has a root document, which can simply be the first docu-
ment assigned to that cluster; thus, the first document ana-
lyzed becomes the root of the first cluster. For subsequent
documents, the N-dimensional vector of the current docu-
ment is compared to the N-dimensional vector of the root
document of each extant cluster. If, for some extant cluster,
the vectors satisfy an edit-distance constraint, the current
document is added to that cluster. If no such cluster exists, a
new cluster is created with the current document as its root.
Accordingly, documents can be clustered into an arbitrary

US 9,355,171 B2

3

number of clusters, and because each document within a
cluster is constrained to be within a maximum edit distance of
the root, the maximum edit distance between any two docu-
ments in the cluster is also constrained.

In further embodiments, clusters that have been created
based on edit distance to the root can be merged subject to a
different constraint on edit distance. For example, in some
embodiments, two clusters are merged only if doing so does
not increase the maximum edit distance between any two
documents within the cluster. Constraints for merging clus-
ters can be defined based on properties of the cluster struc-
tures, eliminating the need for pairwise comparisons of docu-
ments in the clusters.

Certain aspects of the invention relate to methods for
grouping near-duplicate documents that can be implemented
n a computer system having a processor and a computer-
readable storage medium. For each document in a corpus of
documents to be analyzed, the processor can compute a hash
vector based on word count information for the document; the
hash vector includes some number of components that is
advantageously orders of magnitude smaller than the number
of recognized words. The processor can assign each docu-
ment to one (or more) of a number of initial clusters of
documents such that each of the initial clusters contains a root
document and at least some of the initial clusters further
contain at least one child document that satisfies a first edit-
distance constraint relative to the root document. The first
edit-distance constraint can be defined as an upper limit on a
number of components of the hash vectors that are different
between the root document and the child document. The
processor can then merge the initial clusters to form a plural-
ity of final clusters. During the merging, a first one and a
second one of the initial clusters can be merged in the event
that the first one of the initial clusters and the second one of
the initial clusters satisty a second edit-distance constraint
that requires a similarity of topology between the first initial
cluster and the second initial cluster. The processor can store
in the computer readable storage medium a list of the docu-
ments associated with each of the final clusters.

Certain other aspects of the invention relate to systems for
analyzing documents. Such a system can include, for
example, a document information data store and a processor.
The document information data store is configured to store a
vector representation of each document in a corpus. The
vector representation is based on frequency of occurrence
within the document of words from a dictionary, wherein the
vector representation has a dimension that is small compared
to the number of words in the dictionary. The processor is
configured to form clusters of near-duplicate documents
based on the vector representations in the document informa-
tion data store and to store cluster information in the docu-
ment information data store, where the cluster information
includes a list of the documents associated with each of the
clusters of near-duplicate documents. The processor is further
configured to form initial clusters of near-duplicate docu-
ments by applying a first edit-distance constraint to the vector
representations of the documents and to form final clusters of
near-duplicate documents from the initial clusters by merging
some or all of the initial clusters by applying a second edit-
distance constraint to the initial clusters.

Certain other aspects of the invention relate to computer-
readable storage media that contain program instructions,
which when executed by a processor cause the processor to
execute a method of clustering documents based on similar-
ity. The method can include, for example, for each document
in a corpus of documents to be analyzed, accessing a docu-
ment vector that includes several components, each of the

25

30

40

45

50

60

4

components being based on word count information for the
document. Each document can be assigned to an initial cluster
of documents such that each of the initial clusters contains a
root document and at least some of the initial clusters further
contain at least one child document such that each child
document in the cluster satisfies a first edit-distance con-
straint relative to the root document of the cluster. The first
edit-distance constraint can be defined as a minimum degree
of similarity between the document vectors of the root docu-
ment and the child document. At least some of the initial
clusters can be merged to form a set of final clusters; in one
embodiment, a first one and a second one of the initial clusters
are merged in the event that the first one of the initial clusters
satisfies a second edit-distance constraint relative to the sec-
ond one of the initial clusters, where the second edit-distance
constraint is defined as a minimum degree of similarity
between topologies of the first and second initial clusters. A
list of the documents associated with each of the final clusters
can be stored in a document information data store.

The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system according
to an embodiment of the present invention.

FIG. 2 illustrates a transformation of a document to a
vector representation usable in certain embodiments of the
present invention.

FIG. 3 illustrates edit distances among three documents
with S-component hash vectors determined using the tech-
nique described above.

FIG. 4 is a flow diagram of a process for forming clusters of
near-duplicate documents with an edit-distance constraint
according to an embodiment of the present invention.

FIG. 5 is a flow diagram of process for clustering near-
duplicates using a root document and an edit distance con-
straint according to an embodiment of the present invention.

FIG. 6 illustrates a data structure for storing a near-dupli-
cate cluster according to an embodiment of the present inven-
tion.

FIG. 7 is a network graph illustrating topology of a single
cluster that can be formed using the process of FIG. 5 accord-
ing to an embodiment of the present invention.

FIG. 8 is a network graph illustrating a document that
matches edit distance constraints for multiple clusters accord-
ing to an embodiment of the present invention.

FIGS. 9A and 9B are network graphs illustrating a con-
straint for merging near-duplicate clusters that can be used to
preserve the diameter of a cluster during merging according
to an embodiment of the present invention.

FIG. 10 is a flow diagram of a process for merging clusters
according to an embodiment of the present invention.

FIGS.11A and 11B are network graphs illustrating clusters
according to further embodiments of the present invention.

FIG. 12 is a flow diagram of another process for clustering
near-duplicates according to an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention provide automated
techniques for identifying clusters of near-duplicate docu-
ment in which addition of documents (or groups of docu-
ments) to clusters can be constrained such that each document
within the cluster has at least a threshold level of similarity to

US 9,355,171 B2

5

each other document within the cluster. In some embodi-
ments, each document is represented as a vector in a high-
dimensional “word” space with axes corresponding to difter-
ent words and component values corresponding to the
number of occurrences of the words. The high-dimensional
content vector for a document can be projected onto a much
smaller number (N) of different (preferably though not nec-
essarily orthogonal) axes, with each projection being based
on a different subset of the words making up the word space.
In one embodiment, the N projections are made using a hash
function that is applied separately to a bit string representing
the occurrence pattern of words in N different subsets. The N
projections form a N-dimensional document vector repre-
senting the document. An edit distance between documents is
defined in terms of the difference between their document
vectors, e.g., as the number of components of the document
vector that are different between the two documents. Clusters
containing documents that are near-duplicates of each other
can be created based on similarity constraints defined in terms
of the edit distance.

In certain embodiments, clusters can be formed in a single
pass through the set of documents to be clustered. Each clus-
ter has a root document, which can simply be the first docu-
ment assigned to that cluster; thus, the first document ana-
lyzed becomes the root of the first cluster. For subsequent
documents, the N-dimensional vector of the current docu-
ment is compared to the N-dimensional vector of the root
document of each extant cluster. If, for some extant cluster,
the vectors satisfy an edit-distance constraint, the current
document is added to that cluster. If no such cluster exists, a
new cluster is created with the current document as its root.
Accordingly, documents can be clustered into an arbitrary
number of clusters, and because each document within a
cluster is constrained to be within a maximum edit distance of
the root, the maximum edit distance between any two docu-
ments in the cluster is also constrained.

In further embodiments, clusters that have been created
based on edit distance to the root can be merged subject to a
different constraint on edit distance. For example, in some
embodiments, two clusters are merged only if doing so does
not increase the maximum edit distance between any two
documents within the cluster. Constraints for merging clus-
ters can be defined based on properties of the cluster struc-
tures, eliminating the need for pairwise comparisons of docu-
ments in the clusters.

System Overview

FIG.11s ablock diagram of a computer system 100 accord-
ing to an embodiment of the present invention. Computer
system 100 includes a CPU 102, storage subsystem 104,
network interface 106, and user interface 108 connected via a
bus 110. CPU 102 can be, e.g., any programmable general-
purpose processor. Network interface 106 provides access to
one or more other computer systems via a network 112, which
can include, e.g., a local area network (LAN), a wide area
network (WAN), the Internet (a globally interconnected net-
work of computer networks), a virtual private network, and so
on. Network interface 106 can be implemented using stan-
dard protocols, including wired protocols (e.g., Ethernet)
and/or wireless protocols (e.g., any IEEE 802.11 protocol).
User interface 108 can include one or more input devices 114
such as a keyboard, mouse, touch screen, touch pad, etc., and
one or more output devices such as a display 116. Bus 110 can
be implemented using conventional bus architectures and
may include bridges, bus controllers, and the like.

Storage subsystem 104 incorporates various computer-
readable storage media to provide storage for programs and
data accessed by CPU 102 and/or other components of com-

10

15

20

25

30

35

40

45

50

55

60

65

6

puter system 100. In the embodiment shown, storage sub-
system 104 includes primary memory 118. Primary memory
118 provides the fastest access times and can be implemented
using known memory technologies such as DRAM (dynamic
random access memory) and/or SRAM (static random access
memory). Primary memory 118 is advantageously used at
any given time to store programs and/or data that are actively
in use by CPU 102. Thus, for example, memory 118 is shown
as storing a near-duplicate (“ND”) detection program 120
that, when executed, causes CPU 102 to perform near-dupli-
cate detection and clustering operations, e.g., as described
below. Memory 118 in this example also stores a document
transformation program 121 that, when executed, causes
CPU 102 to transform documents to a vector representation
(e.g., as described below) that facilitates near-duplicate
detection and clustering.

Storage subsystem 104 in this embodiment also provides
various secondary storage areas, which can include, e.g.,
magnetic media such as conventional hard or floppy disks,
optical media such as compact disc (CD), digital versatile
disc (DVD), or the like, and/or semiconductor media such as
flash memory. Secondary storage areas generally have longer
access time than primary memory 118 but have larger storage
capacity. In this example, secondary storage areas are pro-
vided for an analysis data store 130 and a document informa-
tion data store 124.

Document information data store 124 provides informa-
tion (also referred to as metadata) about a corpus of docu-
ments. As used herein, a “corpus” of documents can be any
collection of documents about which information is to be
provided to a user of system 100. In one embodiment, the
corpus of documents (or a portion thereof) can be stored in a
document repository 126 that is remote from computer sys-
tem 100 and accessible via network interface 106 and net-
work 112. In another embodiment, the corpus (or a portion
thereof) can be stored locally, e.g., within storage subsystem
104. The corpus can be centralized or distributed (e.g., it can
be a collection of World Wide Web documents that are stored
on respective web servers connected to network 112 as is
known in the art) as desired, and document information data
store 124 might or might not contain actual documents.

Document information data store 124 advantageously con-
tains a unique identifier 126 (“DocID”) for each document in
the corpus. Identifier 126 can include, e.g., a unique reference
to a location where the document is stored or a coded identi-
fier (e.g., an index) that can be used to determine where the
document is stored (e.g., by reference to a lookup table),
allowing the document to be retrieved by reference to its
DocID. Also associated with each document identifier is a
characterization of its content in the form of a vector 128,
which may be, for example, a hash vector (H). In some
embodiments, hash vector H can be generated by CPU 102
executing document transformation program 121; an
example is described below.

In this embodiment, document information data store 124
further includes near-duplicate clusters 129. Each near-dupli-
cate cluster 129 includes a list of document identifiers for
documents within the cluster, and each cluster 129 advanta-
geously has the property that all documents within the cluster
are (with high probability) near-duplicates of each other.
Near-duplicate clusters 129 can be created by CPU 102
executing ND detection program 120; examples are described
below.

Document information data store 124 can also include any
other information about the document, such as dates of cre-
ation, editing, and/or addition to the corpus; type of document
(e.g., e-mail, web page, word processor document); author;

US 9,355,171 B2

7

source or location from which the document was obtained; a
condensed representation of document content in a readily
searchable form; language information; keywords; categori-
zation information; and so on.

Analysis data store 130 in this embodiment provides data
that can be referenced by ND detection program 120 in the
course of generating clusters 129. For example, analysis data
store 130 can include a dictionary 132. As used herein, a
“dictionary” can include any list of words (i.e., character
strings) in any language or combination of languages, and the
list can include any number of words. Dictionary 132 can be
used to define a “word space” for purposes of characterizing
adocument, e.g., as described below. Analysis data store 130
can also provide a set of hash-component definitions 134 for
use in defining a hash vector H. For instance, each hash
component can be based on a different subset of the words in
dictionary 132. As described below, dictionary 132 and hash
component definitions 134 can be used in connection with
document transformation program 121 to generate vectors
128.

It will be appreciated that computer system 100 is illustra-
tive and that variations and modifications are possible. For
example, although storage subsystem 104 is shown as local to
system 100, in alternative embodiments, all or part of storage
subsystem 104 can be implemented as remote storage, e.g.,
on a storage area network (SAN) or other remote server
accessible via network 112. Thus, for example, document
information data store 124 and/or analysis data store 130 can
be stored locally or remotely as desired. Further, although ND
detection program 120 and document transformation pro-
gram 121 are shown as residing in primary memory 118, the
invention is not limited to any particular mechanism for sup-
plying program instructions for execution by CPU 102. For
instance, at any given time some or all of the program instruc-
tions for ND detection program 120 or document transforma-
tion program may be present within CPU 120 (e.g., in an
on-chip instruction cache and/or various buffers and regis-
ters), in a page file or memory mapped file on a system disk,
and/or in other local or remote storage space. In some
embodiments, computer system 100 might be implemented
as a server accessible to a user via a network, and user inter-
face 108 is optional. Computer system 100 may also include
additional components such as floppy disk drives, optical
media drives (e.g., CD or DVD), network interface compo-
nents, USB interface, and the like. Computer system 100 can
be configured with many different hardware components and
can be made in many dimensions and styles (e.g., laptop,
tablet, server, workstation, mainframe); network connections
may be provided via any suitable transport media (e.g., wired,
optical, and/or wireless media) and any suitable communica-
tion protocol (e.g., TCP/IP). A particular computer architec-
ture or platform is not critical to the present invention.
Document Transformation

To facilitate near-duplicate detection, some embodiments
of the present invention use a vector representation of docu-
ments. FIG. 2 illustrates a transformation of a document 200
to a vector representation usable in certain embodiments of
the present invention. Such a transformation can be imple-
mented, e.g., as program code in document transformation
program 121.

A document (d) 200 as shown contains a series of words.
As used herein, a “word” in a document is a sequence of
consecutive characters. Words may be delimited by a word-
separation character such as a space character or punctuation
mark, by a selected maximum length, or by other techniques
for segmenting a document into words. In this embodiment,

35

40

45

50

55

60

65

8

document 200 includes words w13, w2, w7, etc., which are
words from dictionary 132 of FIG. 1.

A first transformation 202 converts document 200 to a
count vector 204 in a high-dimensional “word space” in
which the coordinate axes (or dimensions) correspond to the
different words w1, w2, etc. that are in dictionary 132. Dic-
tionary 132 can have any number of words (e.g., several
thousand or tens of thousands or even hundreds of thousands),
and accordingly count vector 204 is generally a high-dimen-
sional vector. Transformation 202 determines each compo-
nent of count vector 204 by counting occurrences within
document 200 of each word in dictionary 132. The particular
content and number of words in dictionary 132 can be varied
as desired. In some embodiments, dictionary 132 may treat
words derived from the same stem as a single word so that, for
instance, “patent,” “patented,” “patents,” and “patentable”
could all be regarded as the same word; in other embodi-
ments, different words formed from the same stem can be
treated as different words. Existing word-counting algo-
rithms can be applied for this purpose, and a detailed descrip-
tion is omitted.

In the embodiment of count vector 204 of FIG. 2, the count
of'occurrences of each word is represented in a unary format.
For example, the count for each word can be a fixed-length bit
field, and one bit can be set for each occurrence of the word up
to a maximum number. Thus, in vector 204, a count of 10000
represents one occurrence, 11000 represents two occur-
rences, etc. While a five-bit unary representation is used here
for simplicity, a larger representation (e.g., S0 bits) can be
more informative for large documents. In addition, binary or
other formats can also be used to represent the word counts.

It will be appreciated that if transformation 202 is applied
to two documents, the degree of difference between the two
documents can be measured by determining the number of
bits that are different between their count vectors. Thus,
whether two documents are near-duplicates could be deter-
mined by reference to the number of differences between
their count vectors. This pairwise comparison technique,
however, is not well suited for a large corpus of documents.
Further, large amounts of storage may be required for the
count vectors 204, as the vectors may be quite large. In addi-
tion, depending on the content of dictionary 132, count vec-
tors 204 may be only sparsely populated, as a given document
will generally use only a tiny fraction of the words in a
dictionary.

The near-duplicate clustering processes described below
use a more efficient representation in which word-count vec-
tor 204 is further transformed to a lower-dimensional space
by transformation 206, which uses hash definition table 134.
Specifically, transformation 206 computes a number of “hash
components” (e.g., H(d)[1], H(d)[2] etc.) from count vector
204 to produce a hash vector (H(d)) 210. As shown in hash
definition table 134, each hash component is based on a
different subset of the words in dictionary 132 (the “words to
use”). For a given hash component (e.g., H[1]), the counts
from word vector 204 that correspond to the words associated
with that hash component (e.g., words w1, w7, w19, etc. for
hash component H[1]) are concatenated, and a hash function,
which may be of a conventional type, is applied to the con-
catenation.

An arbitrary number (N) of hash components can be com-
puted in transformation 206. In the embodiment shown, N=5,
although other numbers can be used. Each hash component
can involve applying the same hash function to the counts for
a different subset of the words, or different hash functions can
beused to generate different hash components. The subsets of
words used for the different hash components are advanta-

US 9,355,171 B2

9

geously different. In some embodiments, the same word can
beused for multiple hash components (the subsets need not be
disjoint), and there is no requirement that the hash compo-
nents, taken together, incorporate all the words from dictio-
nary 132. Those skilled in the art will recognize that counting
in transformation 204 can be limited to those words from
dictionary 132 that are included in at least one of the hash
components of table 134.

It should be noted that the number of hash components in
hash vector 210 is advantageously much smaller (e.g., several
orders of magnitude smaller) than the number of words in
dictionary 132 or the number of dimensions in count vector
204. To the extent that the hash components H(d)[i] (where
i=1, ..., N) are orthogonal—i.e., do not include any of the
same words—hash vector 210 can be regarded as a projection
of count vector 204 into an N-dimensional space, where N is
lower than the dimensionality of the word space. As described
below, the similarity of hash vectors for different documents
can be used as an approximation of the similarity of their
count vectors. There will in general be some false positives
(i.e., non-similar documents with similar vectors) due to the
loss of information in projecting into a lower-dimensional
space; however, for even a relatively small N (e.g., N=5), it
has been found that the rate of false positives can be kept
acceptably low.

FIG. 2 also illustrates a further optimization in the docu-
ment representation that is used in certain embodiments
described below. From hash vector 210, a “composite hash”
vector (X(d)) 212 is generated. As shown, each component
X(d)[i] of composite hash vector X(d) is generated by con-
catenating all of the hash components H(d)[j] for j=i. Thus
X(d) is also an N-dimensional vector that carries the same
information as hash vector H(d). In some embodiments, each
composite hash component X(d)[i] is generated by applying
a hash function to the concatenated hashes, allowing a reduc-
tion in the number of bits needed to store the X(d)[i] values for
a document; in other embodiments, the concatenation can be
used directly as the composite hash. As described below, in
some embodiments using composite hash vector X(d), rather
than using H(d) directly, can facilitate comparison of docu-
ments to detect near-duplicates.

In addition, in the embodiment of FIG. 2, a “global” hash
(X(d)[0]) 214 is also provided. As shown, global hash X(d)[0]
can be the concatenation of all N components of hash vector
H(d); it is a composite hash with no dimension (or hash index)
excluded. In some embodiments, the global hash X(d)[0] can
be generated by applying a hash function to the concatena-
tion.

It will be appreciated that the transformations shown in
FIG. 2 are illustrative and that variations and modifications
are possible. The dictionary used to define the word-space
and the number of words included may be varied without
restriction. The hash vector can include any number of com-
ponents and each component can be based on any subset of
words selected from the dictionary. Selection can be made in
a variety of ways, e.g., random assignment of words to dif-
ferent subsets. It is not required that every possible word be
associated with a component of the hash vector, nor is assign-
ing the same word to multiple components excluded. Further,
as described below, other projection techniques can be used to
reduce a document representation from word space to an
N-dimensional space, and the present invention is not limited
to hash vectors.

The reduction in size and storage requirements achieved
using hash vectors can be considerable. For example, in one
embodiment, a dictionary can include about 100,000 words,
and 25 bits per word can be to represent the occurrence count.

10

15

20

25

30

35

40

45

50

55

60

65

10

In this the case the bit vector describing each document would
be 2.5 million bits, and it would be very expensive to calculate
and compare bit vectors of this size. Using the hash function
can reduce the 100,000 vector components to a small number
(e.g., 5 or 7) of hash values, which provides considerable
compression.

The dimensionality ofthe hash vector H (i.e., the number N
of hash-vector components) can be selected as a matter of
design choice. Multiple hash-vector components are desir-
able, in part because hash functions are non-local, meaning
that similar (though not identical) inputs do not necessarily
produce similar outputs. Thus, comparing a single hash-vec-
tor component between two documents can tell you whether
the documents are alike or not in relation to the characteristics
represented in that component, but if the component is not the
same, the difference does not correlate with a degree of dis-
similarity. Comparing multiple hash-vector components pro-
vides additional information because documents that have a
high degree of similarity will have hash vectors that are alike
in most of their components, with relatively few differences.

Accordingly, increasing the number N of hash-vector com-
ponents used can provide more information about the docu-
ments, thereby reducing the rate of false positives (i.e., docu-
ments identified as near-duplicates that are in fact not very
similar). On the other hand, increasing the number N of
hash-vector components generally increases the computation
time, both in generating the hash vectors and in comparing
them; it also increases the amount of storage required to store
the hash vectors for each document. It has been found that
N=5 provides a good tradeoff between processing resource
requirements and quality of the results; however, the present
invention is not limited to any particular dimensionality.
Edit Distance Metrics for Transformed Documents

As noted above, similarity of two documents can be evalu-
ated by comparing their hash vectors. This provides a quan-
titative standard for identifying near-duplicate documents. In
particular, for embodiments described below, the term “edit
distance” between documents a and b, denoted as E(a, b), is
used herein to refer to the number of hash-vector components
HJi] (also referred to herein as “hash components™) that are
different between the hash vectors of the two documents aand
b. Whether two documents a and b are near-duplicates can
then be determined based on the edit distance E(a, b) between
them.

IfE(a, b)=0(i.e., the hash vectors are identical), documents
a and b are referred to herein as “exact” duplicates. It is to be
understood that exact-duplicate documents a and b might not
actually be identical in all respects. For example, in the trans-
formations depicted in FIG. 2, word-order information is lost;
thus documents that permute the same words would qualify as
exact duplicates even though they are not in fact identical. As
another example, documents that differ only in regard to
words not used in any of the hash components would qualify
as exact duplicates even though the documents are not iden-
tical.

In certain embodiments, documents that are exact dupli-
cates can be “consolidated” prior to near-duplicate clustering.
For example, each set of exact duplicates can be represented
as a linked list associated with a single hash vector, and that
list can be treated as a single document during subsequent
processing. Such consolidation of exact duplicates can speed
up processing. Accordingly, the description of clustering
embodiments below proceeds as if every document has a
unique hash vector, even though this is not necessarily the
case; instead, it is understood that “document” as used below
can in some instances refer to a consolidation of any number
of exact-duplicate documents.

US 9,355,171 B2

11

If 0<E(a, b)<M, for a preselected maximum edit distance
1=M<N, then documents a and b are near-duplicates. The
maximum edit distance M is a tunable parameter, and an
optimal selection depends on N and on the degree of tolerance
for false positives. In view of the way the hash vector is
defined, those skilled in the art will recognize that as M is
increased relative to N, the degree of similarity required for
documents to be classified as near-duplicate documents is
relaxed, and the rate of false positives will tend to increase. As
M is decreased toward 1, the rate of false positives is reduced,
but the rate of false negatives (i.e., documents that are in fact
highly similar but are not identified as near-duplicates)
increases.

It will be appreciated that “near-duplicate” is not a transi-
tive relationship. For example, FIG. 3 shows three documents
302, 304, 306 with 5-component hash vectors determined
using the technique described above. Document 302 has a
hash vector (12, 5, 3, 8, 16), document 304 has a hash vector
(4,1, 3, 8, 16) and document 306 has a hash vector (4, 1, 3, 8,
7). The dotted lines indicate which hash components are
different between each pair. Thus, E(302, 304)=2, E(304,
306)=1, and E(302, 306)=3. If M=2, then documents 302 and
304 are near-duplicates, and documents 304 and 306 are near
duplicates, but documents 302 and 306 are not near-dupli-
cates.

Asaresult of this, “closure” algorithms suitable for finding
documents satisfying a transitive relationship are not gener-
ally well-suited for forming clusters of near-duplicate docu-
ments. While such algorithms can be applied to the hash-
vector representation and edit-distance metrics described
above, the result will tend to be over-inclusive: although each
document in a cluster may be a near-duplicate of at least one
other document in the cluster, it is likely that some of the
documents within a cluster will not be near-duplicates of each
other. Accordingly, some of the techniques described below
restrict the maximum edit distance within a cluster (referred
to herein as “cluster diameter”) to increase the likelihood that
any two documents within the same cluster are in fact highly
similar to each other.

Restrictive Near-Duplicate Clustering

FIG. 4 is a flow diagram of a process 400 for forming
clusters of near-duplicate documents with an edit-distance
constraint according to an embodiment of the present inven-
tion. Process 400 limits the maximum edit distance within
any cluster to 1.

Process 400 begins (block 402) after the transformations of
FIG. 2 have been applied to each document in a corpus to be
analyzed. The representation of each document in this
embodiment includes the composite hash vector X as defined
above. At block 404, a hash index i is initialized, e.g., to 1. At
block 406, alist ofall the documents is sorted according to the
value of composite hash X[i]. At block 408, a cluster is
formed for each different value of X[i] in the list. For the case
where i=1, since X[1] is identical for two documents only if
H[2],H[3],...,H[N] (i.e., all hash components except H[1])
are all identical, all documents with the same value of X[1]
are necessarily within edit-distance 1 of each other.

It is possible that a document may have a value of X[1] that
does not match any other document; accordingly, some of the
clusters formed at block 408 may be singletons, i.e., clusters
containing only one document. At block 410, it is determined
whether any of the clusters formed at block 408 are single-
tons; if not, process 400 can end (block 412). If singletons
remain, then at block 414, hash index i is incremented; as long
as hash index 1 has a valid value (less than or equal to N) at
block 416, process 400 returns to block 406 to sort the single-
tons according to X[i] and create additional clusters. Process

20

25

40

45

50

12

400 can continue in this manner until no more singletons
remain or until all hash index values (i.e., all N components of
the composite hash vector X) have been exhausted.

It will be appreciated that clustering process 400 is illus-
trative and that variations and modifications are possible.
Actions or operations described as sequential may be
executed in parallel, order of actions or operations may be
varied, and operational blocks may be modified, combined,
added or omitted. For instance, the composite hashes can be
considered in an arbitrary order. Alternatively, hash compo-
nents can be compared directly to determine whether two
documents differ in only one hash component rather than
using the composite hashes as described. Other implementa-
tions are also possible.

By requiring edit-distance 1 for all documents within a
cluster, process 400 can minimize the likelihood of false
positives for a given definition of the hash components; how-
ever, process 400 also restricts the cluster size. For many
applications, the restricted cluster size can be a drawback, as
there may be many false negatives. Accordingly, other
embodiments provide more relaxed constraints on edit dis-
tance within a cluster.

Near-Duplicate Clustering Based on Edit Distance from a
Root

Another group of embodiments provides clustering based
on a root document (also referred to as a “root”). In these
embodiments, all documents within a cluster are constrained
to be within edit-distance 1 of the root document for that
cluster and consequently all documents in the cluster are
within edit-distance 2 of each other.

FIG. 5 is a flow diagram of process 500 for clustering
near-duplicates using a root document and an edit distance
constraint according to an embodiment of the present inven-
tion. Process 500 begins (block 502) after the transformations
of FIG. 2 have been applied to each document in a corpus to
be analyzed. The representation of each document in this
embodiment can include the N-dimensional composite hash
vector X as well as the hash vector H. In some embodiments,
consolidation of exact duplicates (as described above) can be
performed before or when process 500 begins; accordingly,
the following description assumes each document has a
unique hash vector H, and it is understood that some “docu-
ments” may in fact be groups of exact duplicates. However, at
this point, no clusters have been created.

Atblock 504, a first document d to be processed is selected.
Order of selection is not critical, and documents can be pro-
cessed in any order. As will be seen, in process 500 each
document is processed once. At block 506, it is determined
whether the document d has edit distance 1 from the root
document of any existing cluster, e.g., by comparing the
composite hash vector components X(d)[i] for the current
document to the composite hash vector components X(r)[i]
for the root document of an extant cluster. In an alternative
embodiment, components of hash vector H can be compared
directly.

For the first document to be processed, no clusters exist and
the determination at block 506 would be negative. Accord-
ingly, at block 508, a new cluster is defined with the first
document d as its root (r). Thus, in this embodiment, the root
of a cluster is simply the first document added to it. The
composite hashes for the current document d, denoted X(d)/i]
in FIG. 5, are stored as the root composite hashes X(r)[i] for
the new cluster at block 510. At block 512, it is determined
whether more documents remain to be processed If so, pro-
cess 500 returns to block 504 to select a new document d to
process.

US 9,355,171 B2

13

For each document d, block 506 compares the composite
hashes X(d)[1] of document d to the composite hashes X(r)[i]
associated with the roots r of existing clusters. Because of the
way the composite hashes are defined, if any X(d)[i] for
document d, matches the corresponding X(r)[i] for the rootr,
then E(d, r)=1; thus all documents added to a cluster have edit
distance of 1 from the root. If no match is detected, a new
cluster is created with document d as its root at blocks 508 and
510.

If, however, a match is detected at block 506, then docu-
ment d can be added to an existing cluster. More specifically,
atblock 514, itis determined whether the X(d)[i] for different
hash indexes i match X(r)[i] for different clusters. If so, then
one of the matched clusters is selected at block 516. In one
embodiment, the first cluster for which a match is found
during traversal of the cluster list is selected without actually
determining whether any other matches exist. In another
embodiment, the largest cluster for which a match is found is
selected. In still other embodiments, cluster selection at block
514 can be random. In still other embodiments, cluster selec-
tion at block 514 can be based on a preference for certain
cluster structures; for example, in certain embodiments
described below, it may be desirable to limit the number of
different composite hash components X(r)[i] of a given root
that have matching documents within the cluster. At block
518, the document d is added to the matched cluster (or the
selected one of the matched clusters in the event of multiple
matches), and process 500 proceeds to block 512 to continue
processing documents. After all documents have been pro-
cessed, process 500 ends (block 520).

Process 500 results in assigning every document to one
cluster, although (as with process 400) some of the clusters
may be singletons. Each cluster has at least a root document
(the first document added to the cluster), and some of the
clusters will have one or more other “child” documents that
differ from the root in exactly one of the N hash components.
(A child that differs from the root in the jth hash component is
sometimes referred to herein as a “j-child” of the root.) Dif-
ferent documents within the same cluster may differ from the
root in different hash components; for instance, a root may
have j-children and k-children for j=k. Thus, the maximum
edit distance between any two documents in the cluster is 2.

It will be appreciated that clustering process 500 described
herein is illustrative and that variations and modifications are
possible. Steps described as sequential may be executed in
parallel, order of steps may be varied, and steps may be
modified, combined, added or omitted. For instance, the indi-
vidual hash components H[i] can be compared directly
instead of comparing composite hashes X[i] as described.
Documents that are at edit-distance 1 from roots of multiple
clusters can be handled in different ways, as noted above. In
addition, consolidation of exact duplicates prior to clustering
is not required. For example, exact duplicates of a root docu-
ment can be identified and grouped with the root during
clustering; exact duplicates of a child document can simply be
clustered together as children of the same root.

Cluster information can be stored (e.g., as ND clusters 129
in document information data store 124 of FIG. 1) using a
variety of data structures. For example, a cluster can be stored
as a linked list of the document identifiers for the root and
each child. Another example of a cluster data structure 600 is
shown in FIG. 6; it will be appreciated that other data struc-
tures can also be used. Cluster data structure 600 represents
the cluster as a number (N+1) of maps, where N is the dimen-
sion of the hash vector. This map-based structure can be used
to group children of the root that differ from the root in the
same hash vector component HJ[1].

25

30

40

45

55

14

“Map-0 602 is a special map representing the root docu-
ment r. Map-0 602 has the global hash X(r)[0] (defined above
with reference to FIG. 2) as a key. Map-0 602 has one mem-
ber, the root document, identified by its document identifier.
Map-0 also provides size information for the cluster; in this
embodiment, the size information includes a mapCount array
of dimension N, where the array stores the number of docu-
ments in each of the remaining maps.

The remaining N maps 604 (also referred to as “child
maps”) are all similar to each other, and contents are shown in
detail only for Map-1. Map-1 identifies all of the child docu-
ments d in the cluster for which X(d)[1] matches X(r)[1] (i.e.,
the 1-children of the root), and more generally Map-i identi-
fies all of the child documents d in the cluster for which
X(d)[i] matches X(r)[i] (i.e., the i-children of the root).
Accordingly, for Map-1, the key is X(r)[1], the first composite
hash component for the root document. For convenience, the
hash component H(r)[1] that is excluded from composite
hash X(r)[1] can also be stored separately in Map-1.

Map-1 also includes a list (e.g., a linked list) of the 1-chil-
dren of the rootr, i.e., those documents (d,, d,, etc.) that were
added to the cluster because X(d)[1] for that document
matched X(r)[1]. Assuming that sets of exact duplicates were
consolidated prior to clustering, it is expected that any docu-
ment d, in Map-1 will have a hash component H(d,)[1] that is
different from H(r)[1] and that a different document d, in
Map-1 will have a hash component H(d,)[1] that is different
from both H(r)[1] and H(d,)[1]. To keep the complete hash
information for each child document readily accessible, each
entry in the member list for Map-1 can store the “variable”
hash component H(d,)[1] in association with the document
identifier. Other child maps 604 have similar structure to
Map-1, except that each is associated with a different one of
the N hash vector components. It should be noted that some of
the child maps for a cluster may be empty. For example, if no
document is found that matches X(r)[2], then Map-2 would
be empty.

Further illustrating the map structure of FIG. 6, FIG. 7 is a
network graph illustrating topology of a single cluster 700
formed by process 500 for an embodiment where N=5. Root
node 702 is shown connected by edges to child maps (nodes)
704-708 Each edge is labeled with the index of the hash
component (referred to as a “hash index”) that is different
between root 702 and the connected map. Thus, root 702
differs from map-1 704 in H[1], from map-2 705 in H[2] and
so on. In other words, map-1 contains the 1-children of the
root, map-2 the 2-children, and so on. For a particular cluster,
some of maps 704-708 may be empty. In cluster 700, edit
distance between maps can be determined by counting edges;
thus, documents in different ones of maps 704-708 are sepa-
rated by edit distance 2.

It should be noted that two documents within the same map
would also have edit-distance 1 from each other, assuming
exact duplicates have been consolidated. As noted above for
the i=1 case, different documents in Map-i can have HJ[i] that
are different from each other as well as from the root. How-
ever, since any two docs in the same Map-i are known to have
the same hash values as the root except for HJi], their edit
distance from each other is 1 because only HJ[{] is different.

As noted above with reference to FIG. 5, it is possible that
a document can match different X(r)[i] for different clusters,
that is, the same document can be at edit-distance 1 from two
or more roots. FIG. 8 is a network graph illustrating such a
case. Cluster 802 has root A (node 804) and three populated
(i.e., non-empty) maps 806-808 corresponding to three dif-
ferent hash indices. Cluster 812 has root B (node 814) and two
populated maps 816, 818 corresponding to two different hash

US 9,355,171 B2

15

indices. It is supposed that document 820 matches both X(A)
[3] and X(B)[4], that is, it differs from Root-A only in H[3]
and from Root-B only in H[4]. Thus, document 820 could be
placed in either cluster 802 or cluster 812. However, in this
example, Root A differs from Root B in at least two hashes
(e.g., H[3] and H[4] are both different), so cluster 802 is
separate from cluster 812.

As described above, process 500 of FIG. 5 would assign
document 820 to one of clusters 802, 812 but not both. An
alternative embodiment would allow document 820 to be
assigned to both clusters. In this embodiment, a user request
for near-duplicates of document 820 could return both clus-
ters, and a user-request for near duplicates of another docu-
ment in cluster 802 could return document 820 but not other
documents in cluster 812. Thus, cluster size can be kept from
increasing without limit.

Merging of Near-Duplicate Clusters

It should be noted that which documents are used as roots
of clusters is in part a function of the order in which docu-
ments are processed (which can be any order). As shown in
FIG. 7, the root document has a special status in that it is
separated from any other document in the cluster by edit-
distance 1, while child documents might be separated from
each other by edit-distance 2. In general, however, it is as
likely that the root and a document at edit-distance 2 from the
root would actually be similar to each other as it is that a
document in Map-1 and a document in Map-2 would be
similar to each other. Accordingly, some embodiments pro-
vide for merging of clusters or other techniques that allow
documents at larger edit distance from the root to be included
in a cluster.

For example, as shown in FIG. 8, document 820 arguably
belongs to both cluster 802 and cluster 812. In one set of
embodiments, the clustering process described above is
modified such that if a document that matches maps in two
clusters is detected, the clusters are merged.

However, merging the particular clusters shown in FIG. 8
would increase the maximum edit distance between docu-
ments in the merged cluster (i.e., the cluster diameter). For
example, in FIG. 8, root A 804 and root B 814 differ in H[3]
and H[4]. It is also necessarily true that root A and root B have
the same H[1] and H[2] because document 820 differs from
root A only in H[3] and from root B only in H[4]. It follows
that the path from Map-1A 806 to Map-2B 818 has edit-
distance 4: H[1] must be changed to get from Map-1A to root
Aj; H[3] and H[4] must both be changed to get from root A to
root B, and H[2] must be changed to get from root B to
Map-2B. Assuming the total number of hashes Nis small
(e.g., N=5), allowing documents in the same cluster to have
edit distance 4 is a very loose constraint on similarity and can
lead to a high incidence of false positives.

As discussed above, another option for handling the case
shown in FIG. 8 is to assign document 820 to two clusters if
it matches maps in two clusters, without merging the clusters.
In another alternative embodiment, the following rule is used:
If the current document has two different composite hashes
that match child maps for two different clusters, the document
is added to both clusters. If the document matches a child map
in only one cluster, it is added to that cluster and is also used
as the root of a new cluster but with only N-1 maps, corre-
sponding to the composite hashes that did not match any
cluster. The new cluster is associated with, but not merged
into, the cluster that has the matching map. (If the document
matches no maps in any clusters, it is used as the root of a new
cluster with N maps as in process 500.) Like simple merging,
this embodiment does not constrain the cluster diameter.

20

25

40

45

16

A variation on this embodiment allows clusters to be
merged ifa document matches maps in both but constrains the
maximum edit distance to the root, e.g., to 2. Thus, for
example, to merge clusters 812 and 802, one of theroots, e.g.,
root A 804, would be chosen as the root of the merged cluster,
and the merge would be allowed only if every document
within the merged cluster was at edit distance of not more than
2 from root A 804. In this embodiment, when a cluster merge
is considered, each document in one of the clusters is com-
pared to the root of the other; thus, processing time scales
linearly with the number of documents in a cluster. Also, it
should be noted that constraining the edit distance to the root
places a weaker constraint on the cluster diameter. For
example, if all child documents of a cluster are within edit-
distance 2 of the root, it is still possible that two of the child
documents could be separated by edit-distance 4, a decidedly
weaker similarity constraint (especially for small N).

Another variation directly constrains the diameter of a
merged cluster. Thus, for example, in the case of FIG. 8,
clusters 802 and 812 would be merged only if every document
in the merged cluster was within a maximum edit distance
(e.g., 2) of every other document in the merged cluster.
Whether this constraint is satisfied can be determined by a
pairwise comparison of documents across the two clusters to
be merged (by definition, any two documents within the same
cluster already satisfy the constraint and would not require
comparison). For this embodiment, processing time scales as
the square of the average cluster size, making it practical for
small clusters but less practical as cluster size increases.

Still another option is to apply a merge constraint based on
cluster structure, or topology, to the clusters obtained using
process 500 (where each document was assigned to only one
cluster) and merge any clusters that satisfy the merge con-
straint. The merge constraint can be chosen to guarantee that
if two clusters satisfy the constraint, merging them will not
increase the cluster diameter.

For example, FIGS. 9A-9B are network graphs illustrating
a topology-based merge constraint that can be used to pre-
serve the diameter of a cluster at edit-distance 2 according to
an embodiment of the present invention. As used herein,
“topology” of a cluster refers generally to which possible
maps within the cluster are populated. In FIG. 9A, a cluster
900 has root 902 and populated maps 904 and 906. Populated
map 904 differs from root 902 in hash component H[j], and
populated map 906 differs from root 904 in hash component
HJk]; cluster 900 can be said to have a “j-leg” and a “k-leg.”
Map 908 is an empty, or unpopulated, map, as indicated by the
broken lines. Document 910 differs from Map-j 904 in hash
H[k], and document 912 differs from Map-j 904 in hash H[1].
It can be seen that the edit distance from Map-k 906 to
document 910 is 2, as only H[k] and H[j] are different
between the two. Thus, document 910 can be added to cluster
900 without increasing the diameter of the cluster. However,
if map-k 908 were populated (i.e., if cluster 900 had an 1-leg)
adding document 910 would increase the diameter of the
cluster, as the edit distance from document 910 to a document
in map-1 908 is three: H[k], H[j], and H[1] are different.

Similarly, it can be seen that the edit distance from Map-k
906 to document 912 is 3, as H[j], H[1], and H[K] are all
different between the two. Thus, document 912 cannot be
added to cluster 900 without increasing the diameter of the
cluster. More generally, as long as a cluster has only two
populated child maps (or two legs), a document that differs
from either child map in the same hash index as either of the
existing child maps can always be added without increasing
the cluster diameter; a document that differs from a child map
in any other hash index might increase the cluster diameter.

US 9,355,171 B2

17

Further, if the cluster has three or more populated child maps
(or three or more legs), adding any document at edit distance
2 from the root might increase the cluster diameter.

FIG. 9B illustrates an extension of this principle to the case
where document 910 of FIG. 9A is the root 950 of a cluster
920. As before, cluster 900 has only a j-leg and a k-leg. As can
be seen from FIG. 9B, as long as cluster 950 also has only a
j-leg (Map-j 952) and a k-leg (Map-k 954), merging cluster
950 with cluster 900 will not increase the cluster diameter. If,
however, cluster 950 also has a different leg, e.g., an 1-leg
(Map-1 956) as shown in broken lines, merging cluster 950
with cluster 900 may increase cluster diameter.

Thus, the following “Two-Leg” constraint can be used to
merge clusters without increasing the cluster diameter
beyond edit-distance 2: If two clusters whose root documents
are at edit distance 2 (or less) each have the same two (or
fewer) legs, then merge the clusters; otherwise, do not merge
the clusters. This Two-Leg constraint does not require a pair-
wise comparison of documents in the clusters to be merged; in
embodiments where cluster topology information is acces-
sible, it can be applied simply by comparing cluster topolo-
gies. It should be noted that this constraint will not necessarily
result in merging all clusters that could be merged without
increasing the diameter, but it does permit efficient merging,
independent of cluster size, while enforcing the constraint
that merging does not increase the cluster diameter.

FIG. 10 is a flow diagram of a process 1000 for merging
clusters according to an embodiment of the present invention.
Process 1000 applies the Two-Leg rule to clusters generated
using process 500 of FIG. 5 or another process that clusters
documents within edit distance 1 of a root document.

Process 1000 starts (block 1002) with a list of clusters,
which can be represented, e.g., using the cluster data structure
of FIG. 6. At block 1004, a list of mergeable clusters is
generated. Under the Two-Leg constraint, only clusters with
two or fewer legs (or two or fewer populated child maps) can
be merged, and the list generated at block 1004 would include
only these clusters. It is noted that for the data structure of
FIG. 6, a cluster’s mergeability status can be determined by
reading the mapCount array and determining whether the
number of nonzero elements exceeds 2. Alternatively, the
data structure of FIG. 6 can be extended to directly indicate
the number of populated child maps.

At block 1006 a root cluster R for merging is selected, and
at block 1008 a candidate cluster C to be merged into root
cluster R is selected. For example, in one embodiment C can
be any cluster whose root document is at edit distance of 2
from the root of cluster R. (Note that where clusters are
formed using process 500 of FIG. 5, root documents of dif-
ferent clusters would not have edit distance less than 2.) At
block 1010, it is determined whether the clusters R and C have
the same legs (or the same populated child maps). For
example, in the data structure of FIG. 6, the elements of the
mapCount array for each cluster indicate which child maps
are populated (e.g., map-i is populated if mapCount[i] is
nonzero), and block 1010 can include comparing the arrays.
Alternatively, the data structure of FIG. 6 can be extended,
e.g., with a bit mask indicating which child maps are popu-
lated, and block 1010 can include comparing the bit masks. If
the clusters R and C do not have the same legs, they cannot be
merged, and process 1000 proceeds to block 1012 to consider
another candidate cluster C.

If, however, the clusters R and C do have the same legs,
then process 1000 proceeds to block 1014, where it is deter-
mined whether the roots of clusters C and R differ from each
other only in the two indices associated with their two (or
fewer) legs. For example, using the data structure of FIG. 6,

20

25

30

40

45

18
the global hashes X[0] (which include all N hashes) of the two
roots can be read and compared to determine which hash
components are different. If the roots of the clusters differ in
the same two hash components that are associated with their
legs, then at block 1016, the clusters are merged; otherwise,
they are not merged.

Whether or not the clusters are merged, process 1000 can
proceed to block 1012 to determine whether more clusters C
should be considered for merging with the root cluster R. If
so, process 1000 returns to block 1008 to select another
cluster C. If not, process 1000 proceeds to block 1018 to
determine whether another cluster should be tested as a root
cluster R. For instance, in some embodiments, only clusters
that have not already been merged into another cluster would
be usable as root clusters. If additional usable root clusters
remain, process 1000 returns to block 1006 to select a new
root cluster R. Once all possible root clusters have been
tested, process 1000 ends at block 1020.

It will be appreciated that process 1000 is illustrative and
that variations and modifications are possible. Steps
described as sequential may be executed in parallel, order of
steps may be varied, and steps may be modified, combined,
added or omitted. For instance, in one alternative implemen-
tation, all clusters having the same two or fewer populated
maps can be grouped together, and pairwise comparison of
the hash vectors for root documents can take place within
each group. The particular order in which clusters are merged
is not critical, and which cluster is selected as the root of the
merged cluster is also not critical.

Clustering with Relaxed Edit-Distance Constraint

In embodiments described above, the initial clustering
used edit-distance 1 from a root document; resulting in a
maximum cluster diameter of 2. Further, certain embodi-
ments provide for merging of clusters subject to the same
constraint on cluster diameter. Thus, in these embodiments,
near-duplicates are documents with edit distance les than or
equal to M=2. Where the documents are represented using
hash vectors with a relatively small number N of components
(e.g., N=5), the M=2 constraint is generally desirable to con-
trol false positives. However, if the number of hashes used to
represent the documents is increased, the M=2 constraint can
be relaxed without unacceptably increasing the number of
false positives.

Thus, for example, in some embodiments, it may be desir-
able to perform the initial clustering with a relaxed constraint,
e.g., clustering all documents within edit-distance 2 of the
root. Such clusters can have larger diameters than the clusters
described above.

For example, FIG. 11A is a network graph illustrating a
cluster 1100 according to another embodiment of the inven-
tion. All documents in cluster 1100 are within edit-distance 2
of root 1102. The cluster is arranged in a number of maps
1104-1110 according to which hash component(s) is (are)
different between documents in the map and root 1102, and
the various edges, or legs, are labeled with the one or two hash
indices (i,j, k, 1) that differ from the root. Maps 1104-1107 are
at edit-distance 1 from the root, while maps 1108-1110 are at
edit-distance 2 from the root.

In general, for N-dimensional hash vectors, cluster 1100
can have N(N+1)/2 child maps (or legs), and the edit distance
between documents in cluster 1100 can be as large as 4. For
instance, given a document in map-(i, j) 1108 and a document
in map-(k, 1) 1110, the edit distance is four, as the documents
in map-(i, j) 1108 differ from the root in both the i and j hash
indices (but not in the k or 1 index), while the documents in
map-(k, 1) 1110 differ from the root in both the k and 1 hash
indices (butnot in thei orj index); thus, four hash components

US 9,355,171 B2

19

would have to change to transform from one map to the other.
In general, for a cluster defined by reference to a maximum
editdistance E,,, ., from the root, the cluster diameter could be
as high as 2E,,,; clusters such as cluster 1100 are referred to
herein as “unconstrained” clusters. Depending in partonE,,, ..
and the total number of hashes N, unconstrained clusters can
include a substantial number of false positives.

FIG. 11B is a network graph illustrating another cluster
1150 according to another embodiment of the invention.
Cluster 1150 has root 1152 and maps 1154-1157. Cluster
1152 is formed by selecting one of the possible maps (or legs)
at edit-distance 1 from the root (map-i 1154, or the i-leg, in
this example) and only those maps at edit-distance 2 from the
root that differ in the same hash component as the selected
edit-distance 1 map (maps 1155-1157 in this example). If root
1152 has near-duplicates at edit distance 1 in other hash
components, then root 1152 can be used as the root of another
cluster for each such component. Alternatively, documents
that would otherwise be added to the “non-i” child maps of
cluster 1150 can instead be used as roots of separate clusters.

Cluster 1150 is referred to as a “constrained” cluster
because the legs are constrained to have one particular hash
index in common. As a result of the constraint, for N-dimen-
sional hash vectors, cluster 1150 can have up to N child maps
(or legs)—one map at edit-distance 1 plus N-1 maps at edit
distance 2.

Within constrained cluster 1150, the maximum edit dis-
tance is 3 instead of 4. For example, a document in map-(i, j)
1155 differs from root 1152 in the i and j hash components,
for an edit distance of 2. A document in map-(i, k) 1156 differs
from root 1152 in the i and k hash components. Thus, docu-
ments in map 1155 and 1156 differ from each other in the j
and k hashes and might also differ from each other in the i
hash component, for a maximum edit distance of 3.

More generally, the edit distance from a child document in
a cluster to the root corresponds to the number of unique hash
indices that appear along the path from the child to the root.
This fact can be used to constrain cluster diameter. For
example, consider two documents d, and d, within a cluster
(e.g., of the kind shown herein) with a root document r.
Suppose that Z, represents the set of indices of hashes that
would be changed on the path from d, to r, and Z, represents
the set of indices of hashes that would be changed on the path
from d, to r. It follows that the edit distance betweend, and d,
has an upper bound (E,_,,,,) given by:

Eynddy, d)=IZ\|1+12,1-1Z,NZ,], (Eq. 1)

where the notation |Z| represents the cardinality of a set Z.

This rule can be used to provide a more general clustering
technique that constrains maximum edit distance within a
cluster to a desired limit M. FIG. 12 is a flow diagram of a
process 1200 for clustering according to an embodiment of
the present invention that uses a hash-index-based constraint
on edit distance.

Process 1200 begins (block 1202) with a set of documents
represented as N-dimensional hash vectors, e.g., using the
transformations of FIG. 2. At block 1204, clusters are created
based on edit distance from a root document, e.g., as
described above with reference to FIG. 11. In one embodi-
ment, the edit distance from the root is limited to 2; other
limits may also be used. The clusters can include both con-
strained clusters (e.g., cluster 1150 of FIG. 11B) and uncon-
strained clusters (e.g., cluster 1100 of FIG. 11A). In one
embodiment, if a document can be added to either a con-
strained cluster or an unconstrained cluster, the constrained
cluster is preferred; other embodiments may use other rules
for determining how to cluster a document that could be

40

45

20

included in multiple clusters. The clustering process can be
generally similar to process 500 of FIG. 5, except for the
relaxed constraint on edit distance from the root.

Once the clusters have been created, merging can begin. At
block 1206, a root cluster R is selected, and at block 1208, a
candidate cluster C for merging with R is selected. Candidate
cluster C can be, for example, a cluster whose root is within
edit-distance 1 of one of the child maps of cluster R. At block
1210, the hash vectors of the roots of clusters C and R are
compared to determine which hash components are different
between them. At block 1212, using the information from
block 1210 in conjunction with information about the maps of
clusters C and R, an upper bound on the edit distance between
any two documents in the clusters is computed. For example,
for any map M in cluster C and any map M, in cluster R, the
upper bound E,_, (M., My) on the edit distance between
them can be computed using Eq. (1) above. Repeating this for
each pair of maps M, My and selecting the largest E, .,
value for any pair of maps yields an upper bound on the
diameter of the merged cluster.

In some embodiments, various optimizations can be used
to simplify or speed up the merging operations. For example,
merging may be allowed only if the clusters to be merged do
not already exceed a maximum diameter (e.g., 1 or 2).

At block 1214, if the upper bound is within a preset limit,
clusters C and R are merged at block 1216. The preset limit
can be a maximum desired cluster diameter and can be
selected as a matter of design choice based in part on the
number N of hashes. In general, the choice of the number of
hashes and the maximum cluster diameter is based on design
tradeoffs between the computational burden of identifying
near-duplicate documents and the degree of difference that is
considered tolerable between near-duplicate documents.
Using larger values of N and requiring more hashes to match
between the two documents will ensure that documents are
very similar to each other before they are considered near-
duplicates. However, large values of N would also increase
the computational cost of identifying near duplicate clusters.

At block 1218, regardless of whether the clusters were
merged, it is determined whether more candidate clusters C
for merging with R remain; if so, process 1200 returns to
block 1208 to select and process the next cluster C. If not,
process 1200 proceeds to block 1220 to determine whether
more root clusters remain to be considered; if so, process
1200 returns to block 1206 to select and process the next root
cluster R. Once all merge possibilities have been considered,
process 1200 ends (block 1222).

It will be appreciated that process 1200 is illustrative and
that variations and modifications are possible. Steps
described as sequential may be executed in parallel, order of
steps may be varied, and steps may be modified, combined,
added or omitted. For instance, as with other embodiments,
the dimension N of the hash vectors can be varied, and the
maximum allowed edit distance from the root of a clusterto a
child map or the maximum cluster diameter, can also be
varied. In addition, instead of using Eq. (1) applied to maps,
pairwise comparison of documents and direct computation of
edit distance can be used to determine whether to merge
clusters.

Further Clustering Algorithms

Some of the embodiments described above constrain the
maximum diameter of a cluster. Alternative techniques allow
clusters to grow without a limit on maximum diameter. In one
such technique, a map can be maintained for each composite
hash, and groups of documents having a matching composite
hash can be associated with each other as well as with clus-
ters. For example, suppose that document a belongs to cluster

US 9,355,171 B2

21

C3 and has composite hash vector X(a). If another document
b has composite hash vector X(b) and a composite hash
component matches a corresponding component of X(a)
(e.g., X(b)[k] matches X(a)[k] for some k), then document b
is added to cluster C3, and document b is also added to a list
of documents associated with the value X(a)[2]. In addition,
if another component of X(b) (e.g., X(b)(1) for some 12k) has
a value not previously encountered, a new map is created for
that composite hash. The new map entry can point to docu-
ment b, which in turn can point to cluster C3. This technique
allows documents to be added at arbitrary distance from the
first document in a cluster. This creates large clusters of
documents, with possible loss of similarity.

In another approach, documents can be added to a cluster
subject to a constraint on “depth,” or edit distance to the root
of the cluster. For example, the maximum depth can be lim-
ited to 2 (in which case the maximum cluster diameter would
be 4). In one embodiment, for each document that is added to
a cluster, a map of its depth (e.g., an edit path from the root
indicating which hash components are different from the
root) is also stored, and new documents can be added if the
resulting depth is not greater than the limit. Alternatively, a
depth constraint can be imposed by directly determining the
edit distance of the document being considered for addition to
the root of the cluster.

In still another approach that directly constrains maximum
cluster diameter, an exhaustive comparison of every docu-
ment (in the cluster to a document to be added can be made to
determine whether the constraint is satisfied.

Use of Near-Duplicate Clusters

The processes described above can produce a set of cluster
data structures (e.g., as shown in FIG. 6) representing clusters
of documents identified as near-duplicates of each other.
These cluster data structures can be stored for later use, e.g.,
as ND Clusters 129 in document information data store 124 of
FIG. 1. Thus, generation of near-duplicate clusters need not
be performed in real time; for example, the clusters can be
generated during an initial document intake process and
stored for later access by a user.

Near-duplicate clustering can facilitate various user inter-
actions with the documents. For example, a user of system
100 of FIG. 1 may operate user interface 108 in connection
with a document-review program (not explicitly shown)
executed by CPU 102 to retrieve and review documents. In
some embodiments, the user can annotate documents, assign
documents or groups of documents to other reviewers, etc.
For example, the user can select a document to view, and the
viewing interface may include a button or other control that
the user can operate to view a list of near-duplicates of the
document being viewed. In one embodiment, the document-
review program can locate the document identifier of the
document being viewed within one of clusters 129 and can
generate a list of near-duplicates using the other document
identifiers in the cluster. The user can view the list of near-
duplicates, select documents from that list for viewing, assign
the current document and its near-duplicates as a group to
another reviewer, apply an annotation to the entire group, and
SO on.

Further Embodiments

While the invention has been described with respect to
specific embodiments, one skilled in the art will recognize
that numerous modifications are possible. For instance, as
noted, the dimensionality of the hash vectors representing the
documents, the definition of each hash component, and the
particular edit distance constraints can be modified. Compos-
ite hashes as described above can be used to facilitate hash-
vector comparisons but are not required. The particular con-

25

30

40

45

55

22

tent of the dictionary used to define the word space and the
assignment of dictionary words to hash components can be
varied as desired. As noted above, in some embodiments, the
assignment is random, but non-random assignments can also
be used.

Embodiments described above make reference to trans-
forming a document to a hash vector consisting of N hash
components, where each hash component is defined as a hash
function on some set of words that might or might not occur
in the document. The invention, however, is not limited to
hash functions or hash vectors. More generally, other N-di-
mensional vector representations of a document could be
used, and the invention is not limited to hash vectors. For
example, functions other than hash functions can be defined
that are based on the counts of various words, and any set of
N such functions over different subsets of the word space can
be used as components of a vector representation of the docu-
ment. In some embodiments, the functions are orthogonal
(e.g., based on disjoint subsets of the dictionary words); how-
ever, this is not required.

In general, for any N-dimensional vector representation of
a document, an edit distance between two documents can be
defined based on the difference between their vectors. In
some embodiments, edit distance can be defined as the num-
ber of vector components that are different between the docu-
ments, as in the hash-vector embodiments described above. In
embodiments where the vector representation is based on
component functions that exhibit locality (unlike hash func-
tions), components that are similar but not necessarily iden-
tical can be treated as matching. For example, corresponding
components of two vectors can be treated as matching if the
values are within some tolerance window (e.g., 2% or 5%);
the optimum tolerance window will depend on the particular
function used to compute the vector components. Alterna-
tively, if the component functions exhibit locality, the edit
distance can be defined based on the vector difference
between the document vectors.

In any event, clusters can be formed by applying a first
edit-distance constraint (i.e., a constraint limiting the dissimi-
larity between document vectors) relative to an arbitrarily
chosen root document, and clusters can then be merged sub-
jectto a second edit-distance constraint that constrains overall
cluster diameter (i.e., the maximum edit distance between any
two documents in the cluster). This second edit-distance con-
straint can be based on cluster structure or topology, thereby
avoiding the need for pairwise comparison of the documents
in clusters to be merged.

Thus, while the examples described above make specific
reference to “hash vectors,” where each vector component is
computed using a hash function, similar techniques can be
applied to other N-dimensional vector representations, and
the present invention is not limited to hash vectors.

It is also noted that near-duplicate clustering as described
herein can be a separate process from semantic clustering of
documents. As is known in the art, in semantic clustering,
documents are grouped into clusters based on the topics to
which they pertain; a number of algorithms and products for
semantic clustering exist. Document analysis in semantic
clustering algorithms focuses on determining the topic to
which a given document pertains (e.g., income taxes or
Japan), and documents whose content is quite different can be
clustered together if they pertain to the same topic. For
instance, an editorial arguing against an income tax increase
might be grouped with a news article describing how much a
celebrity paid in income taxes, but such articles would likely
not be near-duplicates of each other. Thus, semantic cluster-
ing and near-duplicate clustering represent two different

US 9,355,171 B2

23

approaches to organizing content that can be used indepen-
dently of each other, and a given document may be assigned
to a near-duplicate cluster independently of any semantic
clusters to which the document might also be assigned.

In some embodiments, near-duplicate clustering can be
used in conjunction with semantic clustering. For example,
while as a general rule not all documents in a semantic cluster
are near-duplicates, it is likely that any near-duplicates of a
given document would be placed in the same semantic cluster.
Accordingly, in some embodiments, semantic clustering of
the documents can be performed first, and near-duplicate
clustering can be performed for documents within the same
semantic cluster, thereby reducing the size of the document
set considered during near-duplicate clustering and poten-
tially speeding up near-duplicate clustering. In other embodi-
ments, near-duplicate clustering can be performed first, and
one document from a near-duplicate cluster (e.g., the root
document) can be used as representative of the entire near-
duplicate cluster for purposes of semantic clustering, thereby
reducing the size of the document set considered during
semantic clustering and potentially speeding up semantic
clustering.

As described above, embodiments of the present invention
may be implemented as computer programs. Such programs
may be encoded on various computer readable media for
storage and/or transmission; suitable media include magnetic
disk or tape, optical storage media such as compact disk (CD)
or DVD (digital versatile disk), flash memory, and the like.
Computer readable media encoded with the program code
may be packaged with a device (e.g., microprocessor)
capable of executing the program or provided separately from
such devices.

In addition, while the embodiments described above may
make reference to specific hardware and software compo-
nents, those skilled in the art will appreciate that different
combinations of hardware and/or software components may
also be used and that particular operations described as being
implemented in hardware might also be implemented in soft-
ware or vice versa.

Circuits, logic modules, processors, and/or other compo-
nents may be configured to perform various operations
described herein. Those skilled in the art will appreciate that,
depending on implementation, such configuration can be
accomplished through design, setup, interconnection, and/or
programming of the particular components and that, again
depending on implementation, a configured component
might or might not be reconfigurable for a different operation.
For example, a programmable processor can be configured by
providing suitable executable code; a dedicated logic circuit
can be configured by suitably connecting logic gates and
other circuit elements; and so on.

Thus, although the invention has been described with
respect to specific embodiments, it will be appreciated that
the invention is intended to cover all modifications and
equivalents within the scope of the following claims.

What is claimed is:

1. In a computer system having a processor and a com-
puter-readable storage medium, a method for grouping near-
duplicate documents, the method comprising:

for each document in a corpus of documents to be ana-

lyzed, computing, by the processor, a hash vector based
on word count information for the document, the hash
vector including a plurality of components;

assigning, by the processor, each document to one of a

plurality of initial clusters of documents, wherein each
of the initial clusters contains a root document and at
least some of the initial clusters further contain at least

10

15

20

25

30

35

40

45

50

55

60

65

24

one child document, and wherein each of the child docu-
ments of any one of the initial clusters satisfies a first
edit-distance constraint relative to the root document of
that one of the initial clusters, the first edit-distance
constraint being defined as anupper limit on a number of
components of the hash vectors that are different
between the root document and the child document;

merging, by the processor, the initial clusters to form a

plurality of final clusters based on a second edit-distance
constraint; and

storing in the computer readable storage medium, by the

processor, a list of the documents associated with each of
the final clusters,

wherein assigning each document to one of the initial clus-

ters includes:

for a target one of the documents, comparing the hash
vector of the target document with the hash vector of
the root document of the initial cluster to determine
whether the first edit distance constraint is satisfied;

in response to a determination that the first edit distance
constraint is satisfied, adding the target document as a
child document to the initial cluster, by storing an
identifier of the target document in the computer-
readable storage medium in association with the ini-
tial cluster; and

in response to a determination that the first edit distance
constraint is not satisfied, adding a new cluster to a list
of'the initial clusters in the computer-readable storage
medium, wherein the target document is the root
document of the new cluster.

2. The method of claim 1 wherein the storing includes
storing the list of the documents associated with each of the
final clusters such that all documents associated with a same
one of the final clusters are accessible by reference to any one
ofthe documents associated with that one of the final clusters.

3. The method of claim 1 wherein the components of the
hash vector are orthogonal to each other.

4. The method of claim 1 wherein the first-edit distance
constraint corresponds to an upper limit on the number of
components of the hash vector that are different between the
root document and the target document.

5. The method of claim 4 wherein the merging includes:

for each of the initial clusters that has at least one child

document, grouping the child documents into one or
more maps, wherein all of the child documents that are
grouped within a same map have hash vectors that differ
from the root document of the cluster in the same one or
more of the components;

determining whether the number of maps for a first one of

the initial clusters is at or below an upper bound;
determining whether the number of maps for a second one
of the initial clusters is at or below an upper bound; and
in the event that the number of maps for the first initial
cluster and the number of maps for the second initial
cluster are at or below the upper bound:
determining whether the maps for the first initial cluster
correspond to differences from the root document in
the same one or more of the plurality of components
of the hash vector as the maps for the second initial
cluster; and
merging the first initial cluster and the second initial
cluster in the event that the maps for the first cluster
correspond to differences in the same one or more of
the plurality of components of the hash vector as the
maps for the second cluster.

US 9,355,171 B2

25

6. The method of claim 5 wherein the upper limit on the
number of components of the hash vector that are different is
1 and the upper bound on the number of maps is 2.
7. The method of claim 4 wherein the second edit-distance
constraint is defined such that merging does not increase a
diameter of a cluster.
8. The method of claim 7 further comprising selecting the
second initial cluster, wherein the second initial cluster is
selected from the initial clusters that have a diameter not
greater than 2.
9. A system for analyzing documents, the system compris-
ing:
a document information data store to store a vector repre-
sentation of each of a plurality of documents, the vector
representation being based on frequency of occurrence
within the document of words from a dictionary,
wherein the vector representation has a dimension that is
small compared to the number of words in the dictio-
nary;
a processor to form initial clusters of near-duplicate docu-
ments based on the vector representations in the docu-
ment information data store and to store cluster infor-
mation in the document information data store, the
cluster information including a list of the documents
associated with each of the initial clusters of near-dupli-
cate documents,
wherein the processor is further to form final clusters of
near-duplicate documents from the initial clusters by
merging some or all of the initial clusters by applying a
second edit-distance constraint to the initial clusters,
wherein, to form one of the initial clusters, the processor is
to:
select an extant cluster from a list of extant clusters, each
extant cluster including a root document;

for a target one of the documents, compare the hash
vector of the target document with the hash vector of
the root document of the extant cluster to determine
whether the first edit distance constraint is satisfied;

in response to a determination that the first edit distance
constraint is satisfied, add the target document as a
child document to the extant cluster, including storing
an identifier of the target document in the document
information data store in association with the extant
cluster; and

in response to a determination that the first edit distance
constraint is not satisfied, add a new cluster to the list
of extant clusters, wherein the target document is the
root document of the new cluster.

10. The system of claim 9 wherein the first edit-distance
constraint is based on comparing components of vector rep-
resentations of different ones of the plurality of documents.

11. The system of claim 9 wherein the processor is further
to generate the vector representation of each of the plurality of
documents and to store the vector representations in the docu-
ment information data store.

12. The system of claim 11 wherein the vector representa-
tion comprises a hash vector and wherein the processor is
further to generate each component of the hash vector by
applying a hash function to a different subset of the words in
the dictionary.

13. The system of claim 12 wherein the dimension of the
vector representation is less than 10.

14. The system of claim 9 further comprising a user inter-
face to allow a user to select a document from the plurality of
documents and to view a list of all other documents in the
same final cluster as the selected document.

10

20

25

35

40

45

55

60

26

15. A non-transitory computer-readable storage medium
containing program instructions, which when executed by a
processor cause the processor to:

for each document in a corpus of documents to be ana-

lyzed, access a document vector that includes a plurality
of components, each of the components being based on
word count information for the document;

assign each document to one of a plurality ofinitial clusters

of documents, wherein each of the initial clusters con-
tains a root document and at least some of the initial
clusters further contain at least one child document, and
wherein each of the child documents of any one of the
initial clusters satisfies a first edit-distance constraint
relative to the root document of that one of the initial
clusters, the first edit-distance constraint being defined
as a minimum degree of similarity between the docu-
ment vectors of the root document and the child docu-
ment;

merge at least some of the initial clusters to form a plurality

of final clusters, wherein during the merging, a first one
and a second one of the initial clusters are merged in the
event that the first one of the initial clusters satisfies a
second edit-distance constraint relative to the second
one of the initial clusters; and

store, in a document information data store, a list of the

documents associated with each of the final clusters,

wherein, to assign each document to one of the initial

clusters, the instructions cause the processor to:

for a target one of the documents, compare the hash
vector of the target document with the hash vector of
the root document of the initial cluster to determine
whether the first edit distance constraint is satisfied;

in response to a determination that the first edit distance
constraint is satisfied, add the target document as a
child document to the initial cluster, by storing an
identifier of the target document in association with
the initial cluster; and

in response to a determination that the first edit distance
constraint is not satisfied, add a new cluster to a list of
the initial clusters, wherein the target document is the
root document of the new cluster.

16. The computer-readable storage medium of claim 15,
wherein to access the document vector, the processor is to
compute the document vector.

17. The non-transitory computer-readable storage medium
of claim 16, wherein to compute the document vector for one
of the documents, the processor is to:

determine a number of occurrences within the document of

each of a plurality of words from a dictionary; and

for each of a plurality of subsets of the words from the

dictionary, compute a hash function of a bit field repre-
senting the number of occurrences of each of the words
in that subset.

18. The non-transitory computer-readable storage medium
of claim 15, wherein to access the document vector, the pro-
cessor is to read the document vector from a document infor-
mation data store.

19. The non-transitory computer-readable storage medium
of claim 15, wherein the first edit constraint is an upper limit
on the number of components of the document vectors that
are different between the root document and any of the child
documents within a same one of the initial clusters.

20. The non-transitory computer-readable storage medium
of claim 19, wherein the second edit-distance constraint is a
constraint limiting a diameter of each of the final clusters.

#* #* #* #* #*

